Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes.
نویسندگان
چکیده
UNLABELLED Prolongation of the Ca2+ transient and action potential (AP) durations are two characteristic changes in myocyte physiology in the failing human heart. The hypothesis of this study is that Ca2+ influx via reverse mode Na+/Ca2+ exchanger (NCX) or via L-type Ca2+ channels directly activates contraction in failing human myocytes while in normal myocytes this Ca2+ is transported into the sarcoplasmic reticulum (SR) to regulate SR Ca2+ stores. METHODS Myocytes were isolated from failing human (n=6), nonfailing human (n=3) and normal feline hearts (n=9) and whole cell current and voltage clamp techniques were used to evoke and increase the duration of APs (0.5 Hz, 37 degrees C). Cyclopiazonic acid (CPA 10(-6) M), nifedipine (NIF;10(-6) M) and KB-R 7943 (KB-R; 3x10(-6) M) were used to reduce SR Ca2+ uptake, Ca2+ influx via the L-type Ca2+ current and reverse mode NCX, respectively. [Na+)i was changed by dialyzing myocytes with 0, 10 and 20 mM Na(+) pipette solutions. RESULTS Prolongation of the AP duration caused an immediate prolongation of contraction and Ca2+ transient durations in failing myocytes. The first beat after the prolonged AP was potentiated by 21+/-5 and 27+/-5% in nonfailing human and normal feline myocytes, respectively (P<0.05), but there was no significant effect in failing human myocytes (+5+/-4% vs. steady state). CPA blunted the potentiation of the first beat after AP prolongation in normal feline and nonfailing human myocytes, mimicking the failing phenotype. NIF reduced steady state contraction in feline myocytes but the potentiation of the first beat after AP prolongation was unaltered (21+/-3% vs. base, P<0.05). KB-R reduced basal contractility and abolished the potentiation of the first beat after AP prolongation (2+/-1% vs. steady state). Increasing [Na+]i shortened AP, Ca2+ transient and contraction durations and increased steady state and post AP prolongation contractions. Dialysis with 0 Na+ eliminated these effects. CONCLUSIONS Ca2+ enters both normal and failing cardiac myocytes during the late portion of the AP plateau via reverse mode NCX. In (normal) myocytes with good SR function, this Ca(2+) influx helps maintain and regulate SR Ca2+ load. In (failing) human myocytes with poor SR function this Ca2+ influx directly contributes to contraction. These studies suggest that the Ca2+ transient of the failing human ventricular myocytes has a higher than normal reliance on Ca2+ influx via the reverse mode of the NCX during the terminal phases of the AP.
منابع مشابه
alcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes
21 Prolongation of the Ca transient and action potential (AP) durations are two characteristic changes in myocyte physiology in the 21 1 21 21 failing human heart. The hypothesis of this study is that Ca influx via reverse mode Na /Ca exchanger (NCX) or via L-type Ca 21 channels directly activates contraction in failing human myocytes while in normal myocytes this Ca is transported into the sar...
متن کاملThe Sarcoplasmic Reticulum and the Na/Ca Exchanger Both Contribute to the Ca Transient of Failing Human Ventricular Myocytes
Our objective was to determine the respective roles of the sarcoplasmic reticulum (SR) and the Na/Ca exchanger in the small, slowly decaying Ca transients of failing human ventricular myocytes. Left ventricular myocytes were isolated from explanted hearts of patients with severe heart failure (n518). Cytosolic Ca, contraction, and action potentials were measured by using indo-1, edge detection,...
متن کاملContribution of reverse-mode sodium-calcium exchange to contractions in failing human left ventricular myocytes.
OBJECTIVE To examine the contribution of reverse mode sodium-calcium (Na-Ca) exchange to contractions in isolated left-ventricular myocytes from failing human heart. METHODS Low resistance patch pipettes were used to dialyze cells with Na-free or high-Na pipette solution ([Na]pipette = 0 and 20 mmol/L, respectively) to reduce or enhance Na-Ca exchange. Whole-cell membrane-potential, membrane-...
متن کاملChanges in sarcolemmal Ca entry and sarcoplasmic reticulum Ca content in ventricular myocytes from patients with end-stage heart failure following myocardial recovery after combined pharmacological and ventricular assist device therapy.
AIMS Support with left ventricular assist devices (LVAD) improves cardiac performance in patients with end-stage heart failure. In some cases this strategy, combined with pharmacological treatment, has led to a clinical improvement which remained after LVAD explant. This study defines changes in Ca handling at the cellular level in failing left ventricular tissue taken at LVAD implant (LVAD cor...
متن کاملDynamic regulation of sodium/calcium exchange function in human heart failure.
BACKGROUND Sarcolemmal Na/Ca exchange (NCX) regulates cardiac Ca and contractility. NCX function during the cardiac cycle is determined by intracellular [Ca] and [Na] ([Ca]i, and [Na]i) and membrane potential (Em), which all change in human heart failure (HF). Therefore, changes in NCX function may contribute to abnormal Ca regulation in human HF. METHODS AND RESULTS We assessed the cellular ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 57 4 شماره
صفحات -
تاریخ انتشار 2003